Biplane Fluoroscopy System: The system consists of two Philips BV Pulsera C-arms set in custom frames around a raised floor with a radiolucent imaging area. X-ray images are captured with high speed (1000fps) cameras. Validation Object: 1.6mm tantalum beads were placed in a machined block (wand) then measured to 7 microns with a Coordinate Measuring Machine to determine their centroid location. The wand was translated and rotated via a 1 micron precision stepper-motor for static validation, as well as manually swept through the field of view at ~0.5m/s for dynamic. Static Accuracy and Precision: accuracy was defined as the RMS error between the translation of the stepper-motor and the measured movement of the beads; precision is defined as the standard deviation of the bead locations. For rotation, accuracy was defined as the RMS error between the applied and measured rotation of the wand. Dynamic Accuracy and Precision: accuracy was defined as the RMS error between the known and measured inter-bead distance; precision was the standard deviation of the inter-bead distance. 3D location processing was accomplished using custom software written in MatLab to derive the 3D location of objects from two, time-synchronized, 2D fluoroscopy images of known spatial relationship. This software also compensates for the image distortion (Figure 1).