Robotic cadaver testing of a new total ankle prosthesis model (GERMAN ANKLE SYSTEM)
https://doi.org/10.1186/1757-1146-1-S1-O10
© Richter et al; licensee BioMed Central Ltd. 2008
Published: 26 September 2008
Keywords
Introduction
An investigation should be carried out into possible increased forces, torques and altered motions during motion of a load-bearing ankle after implantation of two different total ankle prostheses. A robot-based cadaver test was developed for the study. We hypothesized that the parameters investigated would not differ in relation to the two implants compared.
Methods
Setting with robot, specimen, and motion analysis system. Specimen mounted to the robot and footplate and equipped with ultrasound transducers.
The robot was guided by a navigation system (VectorVision™, BrainLAB Inc., Kirchheim-Heimstetten, Germany). The robot detected the load-bearing (30 kg) motion of the specimens without prostheses during 100 cycles and mimicked that exact motion after the prostheses were implanted for another 100 cycles. The resulting forces and torques were recorded by an integrated load cell (model FT Delta SI-660-60; Schunk, Lauffen, Germany). The spatial orientation of the tibia, fibula, and foot plate was recorded via an ultrasound measurement system (model CMS HS; Zebris Inc., Tuebingen, Germany). The differences of the measured parameters were compared between prosthesis types.
Results
No shifting or dislocation of the tibial or talar components in relation to the specimen was observed after the testing by radiological assessment. No significant differences of forces, torques and motions (parameters as described below) occurred between the cycles 6–10 with the cycles 96–100 with prosthesis (paired-t-test for all parameters, p > 0.05).
The Hintegra and German Ankle System, significantly increased the forces and torques in relation to the specimen without prosthesis with one exception [One-sample-t-test, each p ≤ 0.01 (exception, parameter lateral force measured with the German Ankle System, p = 0.34)]. The force, torque and motion differences between the specimens before and after implantation of the prostheses were lower with the German Ankle System than with the Hintegra (unpaired t-test, each p ≤ 0.05).
Conclusion
In conclusion, the German Ankle System prosthesis had less of an affect on resulting forces and torques during partial-weight bearing ankle motion than the Hintegra prosthesis. This might improve function and minimize loosening during the clinical use.
Authors’ Affiliations
References
- Leardini A, O'Connor JJ, Catani F, Giannini S: Mobility of the human ankle and the design of total ankle replacement. Clin Orthop. 2004, 39-46.Google Scholar
- Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P: Kinematic changes after fusion and total replacement of the ankle: part 3: Talar movement. Foot Ankle Int. 2003, 24: 897-900.PubMedGoogle Scholar
Copyright
This article is published under license to BioMed Central Ltd.