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Abstract

Background: Metatarsal fractures, especially of the fifth metatarsal, are common injuries of the foot in a young
athletic population, but the risk factors for this injury are not well understood. Dual-energy x-ray absorptiometry
(DXA) provides reliable measures of regional bone mineral density to predict fracture risk in the hip and lumbar
spine. Recently, sub-regional metatarsal reliability was established in fresh cadaveric specimens and associated with
ultimate fracture force. The purpose of this study was to assess the reliability of DXA bone mineral density
measurements of sub-regions of the second and fifth metatarsals in a young, active population.

Methods: Thirty two recreationally active individuals participated in the study, and the bone density of the second
(2MT) and fifth (5MT) metatarsals of each subject was measured using a Hologic QDR x-ray bone densitometer.
Scans were analyzed separately by two raters, and regional bone mineral density, bone mineral content, and area
measurements were calculated for the proximal, shaft, and distal regions of the bone. Intra-rater, inter-rater, and
scan-rescan reliability were then determined for each region.

Results: Proximal and shaft bone mineral density measurements of the second and fifth metatarsal were reliable.
ICC’s were variable across regions and metatarsals, with the distal region being the poorest.

Conclusions: Bone mineral density measurements of the metatarsals may be a better indicator of fracture risk of
the metatarsals than whole body measurements. A reliable method for measuring the regional bone mineral
densities of the metatarsals was found. However, inter-rater reliability and scan-rescan reliability for the distal
regions were poor. Future research should examine the relationship between DXA bone mineral density
measurements and fracture risk at the metatarsals.
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Background
Metatarsal fractures are common injuries to the foot
during sport participation [1]. The distribution of in-
juries across the metatarsals can vary within different
populations. However, many epidemiological studies
do not discriminate between metatarsal fractures and
foot injuries, with most focusing solely on one spe-
cific metatarsal. Healing times for these injuries can

range from 3 to 20 weeks and may require operative
treatment depending on the type and location of the
fracture [2–4]. Fractures that occur near the proximal
(base) of the bone can vary in prevalence and clinical
impact from fractures that occur in the shaft region
of the bone. Distal fractures of the second metatarsal
are more common than proximal; however, proximal
fractures more commonly have delayed unions and
extended healing times compared with non-proximal
fractures, magnifying their clinical impact [5].* Correspondence: kford@highpoint.edu
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Similar to the second metatarsal, fractures to the prox-
imal fifth metatarsal can also have an increased impact
on individuals, especially athletes [6]. Additionally, most
studies support that fifth metatarsal fractures are the
most common metatarsal fracture within the general
population [7]. Dameron, Lawrence, and Quill classified
these fractures into three anatomically separate zones.
Zone 1 fractures are tuberosity avulsion fractures. Zone
2 fractures occur at the metaphyseal/diaphyseal junction
and zone 3 fractures occur along the proximal diaphysis
[8]. Fractures occurring in zone 2 and zone 3 can have
healing times of up to 20 weeks and require operative
treatment [4, 8]. As a result, athletes may be forced to
miss half, or even a whole season of competition after
experiencing a proximal fifth metatarsal fracture [6].
Understanding the factors that predispose athletes to

metatarsal fractures is important prior to designing injury
prevention interventions. Dual-energy X-ray absorpti-
ometry (DXA) is a radiological technique that uses X-rays
to detect body composition by utilizing the variability of
mass attenuation coefficients across different types of
body tissues and has been found to be reliable in deter-
mining bone mineral densities of the femoral neck and
distal thigh [9]. Furthermore, it has been found that ex-
treme deficits in bone mineral density (BMD) at the hip
are associated with metatarsal fractures [10]. However, this
relationship may not be as strong in athletic populations,
thus a more site-specific approach may be necessary [11].
Recently, a novel method of measuring the bone min-

eral density of ex-vivo metatarsals was created and found
to be reliable using DXA technology. This method was
adapted for the total BMD of in vivo metatarsals and
found to be reliable [12]. It is uncertain how further re-
gion of interest (ROI) divisions such as proximal, shaft,
and distal sections affect these results. Therefore, the
purpose of this study was to identify the reliability of a
novel DXA analysis procedure on fifth metatarsal and
second metatarsal segments in vivo. We hypothesized
that within rater, between rater, and between day reli-
ability would be reliable for all segments.

Methods
Thirty-two recreationally active individuals participated in
the study (20 (62.5%) male participants and 12 (37.5%) fe-
male participants; age 23.5 ± 5.9 yrs.; mass 71.6 ± 12.9 kg;
height 174.9 ± 10.4 cm). Sample size was based on the Inter-
national Society for Clinical Densitometry’s recommenda-
tions for precision assessments [13]. Participants signed a
consent form to participate in the research study that was
approved by High Point University's IRB. Participants pre-
sented to the laboratory on two occasions separated by at
least 24 h (5.53 ± 8.34 days). All measurements described
below were conducted on each of the two occasions that
participants presented to the laboratory, so that scan-rescan

reliability could be computed. While both left foot and right
foot were collected as described below, only the left foot
was chosen to analyze for scan-rescan reliability.
A Hologic QDR x-ray bone densitometer was used to

measure the bone density of the second (2MT) and fifth
(5MT) metatarsals of each subject. Before scanning, a
quality control procedure was performed each day using
the Hologic DXA quality control phantom. The 2MT was
scanned first followed by the 5MT. The foot was posi-
tioned along the length of the table on a 6 cm thick mat
that was centered in the middle of the DXA table. Partici-
pants were instructed to sit upright with their feet flat and
hip width apart. Crosshairs from the scanner allowed the
position of the scanner to be adjusted and placed directly
above the subject’s foot which remained still during the
scans. For scanning the 2MT, the antero-posterior cross-
hair was positioned between the first and second metatar-
sals while the medio-lateral crosshair was positioned in
front of the distal portion of the hallux. For scanning the
5MT, the antero-posterior axis was positioned between
the fourth and fifth metatarsals while the medio-lateral
axis was positioned in front of the distal portion of the
hallux. A folded cloth was placed under the lateral side of
the foot to optimally position the fourth and fifth metatar-
sals in the scanned image.
Scans were analyzed using the Hologic lumbar spine

analysis software, version 4.0 [14]. To establish inter-
rater reliability, two trained raters followed a standard-
ized step-by-step process to analyze the scans in a ran-
domized order. Raters were investigators who had
previous experience in full body and metatarsal DXA
scan procedures. Raters were blinded and did not
have access to previous scans. Once the respective
scan had been selected, the rater began the analysis
by adjusting the global ROI so that it encompassed
the entire image (126 × 201 pixels) (Fig. 1). The rater
then selected bone map and deleted all bone present.
The scan was then zoomed in to 150% in order to
visualize the outline of the bone more clearly. The
bone was outlined by moving the curser along the
edge of the bone and on the points where there was
the greatest amount of change in contrast. The out-
line was adjusted for any errors during tracing and
then filled using the “fill holes” feature. Using the
vertebral lines feature, the bone was then split into prox-
imal, shaft, and distal components. Lines were made per-
pendicular to the ROI and were placed on the thinnest
region of cortical bone on the proximal and distal ends.
The software was then able to calculate the bone mineral
content (BMC), area for the proximal, shaft, and distal re-
gions. The BMD was then calculated as the ratio of BMC
to area in each region.
To establish intra-rater reliability, one of the raters

performed the entire analysis procedure described

Pritchard et al. Journal of Foot and Ankle Research  (2017) 10:52 Page 2 of 6



above on identical scans twice, and these repeated
analyses were done on separate days, at least a week
apart. Scans from all 32 participants’ first laboratory
visit were used for the intra-rater reliability proce-
dures, and assessment was performed for both 2MT
and 5MT scans. All analyses were performed in a ran-
domized order via a random number generator, in
which scans from 2MT and 5MT were intermixed;
the order was different for the first and second ana-
lysis of these identical scans.
Three different types of reliability analyses were

performed: 1) intra-rater; 2) inter-rater; and 3) scan-
rescan. For each of these three types of analysis, sin-
gle measures intraclass correlation coefficients (ICC)
using the two way random effects models (corre-
sponding to ICC2,1 terminology) were computed for
each region (proximal, shaft, and distal) of 2MT and
5MT. 95% confidence intervals were computed for
each ICC. Excellent ICC’s were considered >85%, fair
ICC’s were considered >70% and poor ICC’s were
considered <70%. Intra-rater reliability for each re-
gion of each metatarsal was computed using the data
obtained from repeated measurements by one rater
(Rater 1) of identical scans, as described above.
Inter-rater reliability for each region of each meta-
tarsal was computed using data obtained from mea-
surements by the two different raters (Rater 1 and
Rater 2) from identical scans. Scan-rescan reliability
for each region of each metatarsal was computed
using data obtained from one rater (Rater 1) from
two different scans (collected during each of the two
laboratory visits). The standard error of measure-
ment (SEM) was computed for each region for each
metatarsal [15], which was normalized to the mean

of each respective parameter in order to be
expressed as a percentage. Statistical analyses were
performed in SPSS v23.0 and Microsoft Excel.

Results
Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9 present the intra-
rater reliability, inter-rater reliability, and scan-rescan
reliability, respectively, of the proximal, shaft, distal
and total regions of the 2MT and 5MT. Intra-rater
reliability and inter-rater reliability ranged from fair
to excellent for proximal, shaft, distal, and total re-
gions of the 2MT and 5MT. The inter-rater ICC for
all BMD regions of the 5MT ranged from 0.77–0.86
with SEM range of 10.2–13.7%. The intra-rater ICC
for all BMD regions of the 5MT ranged from 0.83–
0.86 with SEM range of 10.1–12.0%. The inter-rater
ICC for all BMD regions of the 2MT ranged from
0.95–0.97 with SEM range of 2.8–4.6%. The intra-
rater ICC for all BMD regions of the 2MT ranged
from 0.95–0.97 with SEM range of 2.4–4.9%. Scan-
rescan reliability for the proximal and shaft segments
of the 2MT and the 5MT was fair. Scan-rescan ICC’s
of the 5MT proximal and shaft regions were 0.83,
SEM 11.0%, and 0.84, SEM 9.5%, respectively; the
ICC of the 2MT proximal and shaft regions were
0.77, SEM 10.1% and 0.76, SEM 8.4%, respectively.
Interestingly, scan-rescan reliability of the distal seg-
ments of the 2MT and 5MT was poor. The scan-
rescan ICC for the distal region of 5MT was 0.57
with an SEM of 16.2%, with all other ICC ≥ 0.70 and
SEM ≤ 13.7%.

Discussion
Our assessment of bone mineral density was reliable
for the 2MT and 5MT total ROI’s. These results
were consistent with the findings of other research,
which also found good reliability in the 2MT and

Fig. 1 Representative example of DXA analysis of the regions of interest
from the lateral and medial scans. The outlined area within L2 was
considered proximal. The outlined area within L3 was considered the
shaft. The outlined area within L4 was considered distal

Table 1 BMD Intra-rater reliability

Variable MeanA1
(g/cm2)

MeanA2
(g/cm2)

ICC (95% CI) SEM (%)

Fifth Metatarsal bone

Proximal 0.5 ± 0.11 0.48 ± 0.13 0.84 (0.69–0.92) 10.7

Shaft 0.45 ± 0.10 0.44 ± 0.12 0.86 (0.73–0.93) 10.1

Distal 0.25 ± 0.06 0.25 ± 0.07 0.83 (0.67–0.92) 12.0

Total 0.44 ± 0.10 0.43 ± 0.12 0.86 (0.72–0.93) 10.1

Second Metatarsal bone

Proximal 0.65 ± 0.13 0.64 ± 0.14 0.95 (0.90–0.98) 4.9

Shaft 0.51 ± 0.09 0.51 ± 0.09 0.98 (0.96–0.99) 2.4

Distal 0.31 ± 0.06 0.31 ± 0.06 0.97 (0.93–0.98) 3.9

Total 0.49 ± 0.08 0.48 ± 0.09 0.97 (0.92–0.98) 3.4

Intraclass Correlation Coefficient (ICC), Standard Error of Measure (SEM)
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5MT [12, 14]. In addition to the total ROI, this
study found good reliability of the proximal and
shaft ROI’s and poor reliability of the distal ROI.
The poor results of the distal ROI may have to do
with the quality of the DXA scans in certain regions.
Interestingly, inter-rater reliability for the distal

5MT and proximal 2MT area were not reliable. The
variability within the geometry of these segments
across individuals and the human error introduced
by outlining the bones during analysis may have
played a role in these findings [14]. Intra-rater reli-
ability for the area of the distal 5MT and proximal
2MT were considered fair and excellent, respectively.
However, inter-rater reliability and scan-rescan reli-
ability for the distal region were poor. This suggests
that while an individual rater may analyze an
individual scan reliably, there were both ambiguities
in the analysis procedures across raters and variabil-
ity within the DXA scanning software that led to

unreliable scan-rescan and inter-rater results. Stand-
ardizing the sagittal plane orientation of the ankle may
help improve the reliability of these measures. Future
research should attempt to further standardize these
testing protocols and validate these findings with other
methods such as quantitative computed tomography
(qCT) in order to improve the inter-rater and scan-
rescan reliability [16].
Currently, whole body or femoral neck BMD mea-

surements are used to assess an individual’s risk for
stress fractures. However, the relationship between
whole body bone mineral density and fractures may
not be as strong in certain athletic populations. A
recent study examined the relationship between bone
stress injuries and the risk factors in the female ath-
lete triad: low energy availability, menstrual dysfunc-
tion, and low total BMD and found that high risk
athletes were four times more likely to experience a
bone stress injury (BSI) compared to the low risk

Table 2 BMD Inter-rater reliability

Variable MeanA1
(g/cm2)

MeanA2
(g/cm2)

ICC (95% CI) SEM (%)

Fifth Metatarsal bone

Proximal 0.5 ± 0.11 0.46 ± 0.13 0.81 (0.58–0.91) 11.7

Shaft 0.45 ± 0.10 0.45 ± 0.12 0.86 (0.73–0.93) 10.2

Distal 0.25 ± 0.06 0.24 ± 0.07 0.77 (0.57–0.89) 13.7

Total 0.44 ± 0.10 0.42 ± 0.11 0.83 (0.64–0.92) 11.0

Second Metatarsal bone

Proximal 0.65 ± 0.13 0.64 ± 0.14 0.95 (0.91–0.98) 4.6

Shaft 0.51 ± 0.09 0.50 ± 0.09 0.97 (0.89–0.99) 2.8

Distal 0.31 ± 0.06 0.30 ± 0.06 0.96 (0.82–0.99) 4.2

Total 0.49 ± 0.08 0.47 ± 0.08 0.95 (0.77–0.98) 3.9

Intraclass Correlation Coefficient (ICC), Standard Error of Measure (SEM)

Table 3 BMD Scan-Rescan reliability

Variable MeanD1
(g/cm2)

MeanD2
(g/cm2)

ICC (95% CI) SEM (%)

Fifth Metatarsal bone

Proximal 0.5 ± 0.11 0.51 ± 0.13 0.83 (0.67–0.92) 11.0

Shaft 0.45 ± 0.10 0.46 ± 0.11 0.84 (0.68–0.92) 9.5

Distal 0.25 ± 0.06 0.26 ± 0.06 0.57 (0.26–0.77) 16.2

Total 0.44 ± 0.10 0.45 ± 0.11 0.82 (0.66–0.91) 10.4

Second Metatarsal bone

Proximal 0.65 ± 0.13 0.65 ± 0.14 0.77 (0.58–0.89) 10.1

Shaft 0.51 ± 0.09 0.50 ± 0.08 0.76 (0.56–0.88) 8.4

Distal 0.31 ± 0.06 0.30 ± 0.07 0.56 (0.26–0.77) 14.5

Total 0.49 ± 0.08 0.48 ± 0.09 0.70 (0.45–0.84) 9.7

Intra class Correlation Coefficient (ICC), Standard Error of Measure (SEM)

Table 4 BMC Intra-rater reliability

Variable MeanA1
(g/cm2)

MeanA2
(g/cm2)

ICC (95% CI) SEM (%)

Fifth Metatarsal bone

Proximal 1.87 ± 0.63 1.76 ± 0.66 0.91 (0.79–0.96) 11.0

Shaft 1.32 ± 0.40 1.31 ± 0.44 0.90 (0.81–0.95) 10.4

Distal 0.33 ± 0.11 0.31 ± 0.12 0.88 (0.73–0.95) 12.7

Total 3.53 ± 1.08 3.38 ± 1.16 0.92 (0.83–0.96) 9.5

Second Metatarsal bone

Proximal 1.11 ± 0.39 0.91 ± 0.34 0.65 (0.21–0.84) 23.0

Shaft 1.68 ± 0.46 1.67 ± 0.51 0.96 (0.92–0.98) 5.8

Distal 0.55 ± 0.21 0.54 ± 0.19 0.94 (0.87–0.97) 9.8

Total 3.34 ± 0.89 3.12 ± 0.90 0.92 (0.71–0.97) 7.9

Intra class Correlation Coefficient (ICC), Standard Error of Measure (SEM)

Table 5 BMC Inter-rater reliability

Variable MeanA1
(g/cm2)

MeanA2
(g/cm2)

ICC (95% CI) SEM (%)

Fifth Metatarsal bone

Proximal 1.87 ± 0.63 1.66 ± 0.64 0.87 (0.53–0.95) 11.7

Shaft 1.32 ± 0.40 1.52 ± 0.48 0.79 (0.33–0.92) 10.2

Distal 0.33 ± 0.11 0.36 ± 0.14 0.85 (0.69–0.93) 13.7

Total 3.53 ± 1.08 3.54 ± 1.20 0.92 (0.83–0.96) 11.0

Second Metatarsal bone

Proximal 1.11 ± 0.39 0.96 ± 0.32 0.73 (0.39–0.88) 4.6

Shaft 1.68 ± 0.46 1.79 ± 0.46 0.92 (0.74–0.97) 2.8

Distal 0.55 ± 0.21 0.56 ± 0.20 0.90 (0.81–0.95) 4.2

Total 3.34 ± 0.89 3.31 ± 0.87 0.95 (0.89–0.97) 3.9

Intra class Correlation Coefficient (ICC), Standard Error of Measure (SEM)
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group [11]. However, this relationship was not found
in BSI’s of the metatarsals [11]. While increased
BMD seems to be strongly related to fracture risk,
whole body BMD may not be related to metatarsal
BMD measurements in athletes and thus, may not
be a good indicator of metatarsal fracture risk [17].
It may be that DXA BMD measurements of the
metatarsals will give a better indication of injury risk
than whole body BMD measurements. Furthermore,
BMD measurements of the proximal metatarsals may
yield better insight into fractures of this site.
Knowledge of an individual’s metatarsal bone mineral

density distribution could be useful in designing inter-
ventions to prevent these injuries. Bone constantly re-
models itself to adapt to the loads that are being applied
to it [18]. Through training, it is possible to increase
the bone mineral content of specific bones; however,
it is uncertain to what limit this remodeling takes
place [19]. In a comparison of 3 groups of runners, low-
distance (5–30 km/wk) middle-distance (30–50 km/wk)

and long-distance (50-100 km/wk), bone mineral
density was higher in the middle and long distance
runners compared to low-distance runners and similar
between middle and long-distance runners [19]. Thus,
whilst chronic loading is vital to the bone remodeling
process, at some point, the amount of chronic loading
will not produce any greater gains in bone mineral
density. This limit may be important in identifying
fracture risk.

Conclusions
In summary, a reliable technique for assessing bone
mineral density of shaft and sub-regions of the shaft
of the second and fifth metatarsals was performed.
This could be used in laboratories to screen for indi-
viduals who may be at risk for metatarsal fractures.
Furthermore, the reliability of the segmented ROI’s
may provide additional insight into fracture risk at
the metatarsals.

Table 6 BMC Scan-Rescan reliability

Variable MeanD1
(g/cm2)

MeanD2
(g/cm2)

ICC (95% CI) SEM (%)

Fifth Metatarsal bone

Proximal 1.87 ± 0.63 1.94 ± 0.73 0.89 (0.78–0.95) 12.8

Shaft 1.32 ± 0.40 1.36 ± 0.40 0.83 (0.66–0.91) 12.6

Distal 0.33 ± 0.11 0.34 ± 0.12 0.66 (0.39–0.83) 21.6

Total 3.53 ± 1.08 3.63 ± 1.20 0.89 (0.79–0.95) 11.0

Second Metatarsal bone

Proximal 1.11 ± 0.39 1.08 ± 0.36 0.66 (0.40–0.82) 20.8

Shaft 1.68 ± 0.46 1.65 ± 0.45 0.87 (0.75–0.94) 10.0

Distal 0.55 ± 0.21 0.54 ± 0.21 0.82 (0.65–0.91) 16.6

Total 3.34 ± 0.89 3.27 ± 0.90 0.88 (0.77–0.94) 9.4

Intra class Correlation Coefficient (ICC), Standard Error of Measure (SEM)

Table 7 Area Intra-rater reliability

Variable MeanA1
(g/cm2)

MeanA2
(g/cm2)

ICC (95% CI) SEM (%)

Fifth Metatarsal bone

Proximal 3.7 ± 0.53 3.57 ± 0.54 0.80 (0.60–0.90) 6.7

Shaft 2.9 ± 0.51 2.96 ± 0.50 0.93 (0.85–0.97) 4.7

Distal 1.29 ± 0.21 1.22 ± 0.18 0.72 (0.39–0.87) 9.0

Total 7.89 ± 1.01 7.74 ± 0.96 0.92 (0.83–0.96) 3.6

Second Metatarsal bone

Proximal 0.65 ± 0.13 0.64 ± 0.14 0.95 (0.90–0.98) 4.9

Shaft 0.51 ± 0.09 0.51 ± 0.09 0.98 (0.96–0.99) 2.4

Distal 0.31 ± 0.06 0.31 ± 0.06 0.97 (0.93–0.98) 3.9

Total 0.49 ± 0.08 0.48 ± 0.09 0.97 (0.92–0.98) 3.4

Intra class Correlation Coefficient (ICC), Standard Error of Measure (SEM)

Table 9 Area Scan-Rescan reliability

Variable MeanD1
(g/cm2)

MeanD2
(g/cm2)

ICC (95% CI) SEM (%)

Fifth Metatarsal bone

Proximal 3.7 ± 0.53 3.72 ± 0.55 0.83 (0.68–0.92) 6.9

Shaft 2.9 ± 0.51 2.94 ± 0.41 0.73 (0.51–0.87) 9.0

Distal 1.29 ± 0.21 1.28 ± 0.27 0.57 (0.26–0.77) 13.9

Total 7.89 ± 1.01 7.94 ± 1.00 0.89 (0.77–0.94) 4.3

Second Metatarsal bone

Proximal 1.71 ± 0.35 1.68 ± 0.42 0.32 (−0.05–0.61) 20.4

Shaft 1.73 ± 0.40 1.77 ± 0.43 0.58 (0.28–0.78) 16.0

Distal 3.28 ± 0.54 3.24 ± 0.59 0.83 (0.68–0.92) 7.3

Total 6.72 ± 0.86 6.69 ± 1.03 0.84 (0.69–0.92) 6.2

Intra class Correlation Coefficient (ICC), Standard Error of Measure (SEM)

Table 8 Area Inter-rater reliability

Variable MeanA1
(g/cm2)

MeanA2
(g/cm2)

ICC (95% CI) SEM (%)

Fifth Metatarsal bone

Proximal 3.7 ± 0.53 3.52 ± 0.50 0.77 (0.51–0.90) 7.0

Shaft 2.9 ± 0.51 3.38 ± 0.41 0.52 (−0.1–0.82) 11.3

Distal 1.29 ± 0.21 1.47 ± 0.26 0.54 (0.02–0.79) 12.9

Total 7.89 ± 1.01 8.38 ± 0.90 0.78 (0.18–0.92) 5.9

Second Metatarsal bone

Proximal 1.71 ± 0.35 1.49 ± 0.29 0.45 (0.06–0.71) 16.5

Shaft 3.28 ± 0.54 3.57 ± 0.49 0.75 (0.11–0.91) 8.0

Distal 1.73 ± 0.40 1.85 ± 0.36 0.67 (0.41–0.83) 12.7

Total 6.72 ± 0.86 6.90 ± 0.87 0.86 (0.71–0.93) 4.8

Intra class Correlation Coefficient (ICC), Standard Error of Measure (SEM)
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