MEETING ABSTRACT

A novel technique of quantifying first metatarsophalangeal (1st MPJ) joint stiffness

Marabelle L Heng^{1,2}, Pui W Kong^{1*}

From 4th Congress of the International Foot and Ankle Biomechanics (i-FAB) Community Busan, Korea. 8-11 April 2014

The first metatarsophalangeal joint (1^{st} MPJ) mobility is usually described by (i) range of motion in degrees (°) or (ii) stiffness based on an experienced tester's subjective feel, ie. hypermobile, normal or stiff. Approximately 65° of 1^{st} MPJ dorsiflexion is required for normal effective walking [1]. Visual estimation of 1^{st} MPJ range of motion is often used in current practice [2], reflecting the absence of a reliable and practical method for clinicians to quantify 1^{st} MPJ stiffness. This study presents a novel technique to measure joint stiffness using a tactile pressure sensing system (Figure 1A) together with simple video analysis.

To illustrate the method, data were collected on one female flat-footed subject with posterior tibial tendon dysfunction (age 25 yr, body mass index 20.6 kg/m²). The

moment arm was measured from the tuberosity of the first metatarsal head to just beneath the tuberosity of the 1^{st} distal phalanx (Figure 1B). A qualified podiatrist moved the 1^{st} MPJ of the subject through its full range of motion before data collection. For each trial, joint movement is paused briefly at 3 interval points between the resting and maximally dorsiflexed position. At each interval point, the corresponding force applied was measured using a tactile pressure sensing system (Figure 1C). The procedures were recorded by a synchronised webcam such that the angular displacement of the 1^{st} MPJ can be quantified using video analysis. A total of 3 trials were taken, resulting in nine sets of data points to plot a torque-angular displacement graph (Figure 2). The joint stiffness was then calculated as the slope of the line of best fit as 3.8 Nmm/deg.

Figure 1 A. Finger sleeve with pressure pad (circled) on tip of thumb to measure force applied to move the 1st MPJ. **B.** Moment arm (length of proximal phalanx) from joint fulcrum to point of force application. **C.** Displacement force applied to proximal phalanx, dorsiflexing 1st MPJ through its range of motion.

* Correspondence: puiwah.kong@nie.edu.sg

¹Physical Education & Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore 637616 Full list of author information is available at the end of the article

© 2014 Heng and Kong; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Heng and Kong Journal of Foot and Ankle Research 2014, 7(Suppl 1):A32 http://www.jfootankleres.com/content/7/S1/A32

The R^2 indicates that 61% of variability can be explained by this model.

The proposed method of quantifying 1st MPJ stiffness is potentially useful for measuring small joint stiffness in clinical practice. Quantified joint stiffness provides greater accuracy to facilitate clinicians in their diagnoses and prescription of treatment.

Authors' details

¹Physical Education & Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore 637616. ²Podiatry Department, Singapore General Hospital, Singapore 169608.

Published: 8 April 2014

References

- Hopson MM, McPoil TG, Cornwall MW: Motion of the first metatarsophalangeal joint. Reliability and validity of four measurement techniques. *Journal of the American Podiatric Medical Association* 1995, 85(4):198-204.
- Jones AM, Curran SA: Intrarater and interrater reliability of first metatarsophalangeal joint dorsiflexion. Goniometry versus visual estimation. Journal of the American Podiatric Medical Association 2012, 102(4):290-298.

doi:10.1186/1757-1146-7-S1-A32

Cite this article as: Heng and Kong: **A novel technique of quantifying first metatarsophalangeal (1st MPJ) joint stiffness.** *Journal of Foot and Ankle Research* 2014 **7**(Suppl 1):A32.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central