Skip to main content

Table 2 Results of Phase 1, 2 (questionnaires) and 3 (group discussion) on assessment of the foot and ankle

From: Inter-assessor reliability of practice based biomechanical assessment of the foot and ankle

Biomechanical examination No. of podiatrists that use the assessment (total =12) Key features of examination (derived from questionnaire) Consensus from group discussion
NCSP and RCSP 9 Position is estimated not measured 9/9 Use this as an assessment of foot type 8/9 Use this to develop a treatment rationale (for example orthotic prescription) Frontal plane position of the calcaneus relative to the leg was always observed Foot type is classified as pronated/supinated/neutral This is a key biomechanical examination of the foot Heel bisection lines do not add value to the examination Podiatrists feel that they could accurately measure the frontal plane position of the calcaneus quantitatively if required
Range of motion at the ankle joint 12 Range of motion is estimated, not measured 12/12 podiatrists assessed with the knee extended
9/12 podiatrists assessed with the knee flexed The total range of motion and range of dorsiflexion are assessed
Podiatrists state that the normal range of ankle dorsiflexion is 10° Assessment of the range of motion is based on the podiatrist's own experience as to what they perceive as normal and not through the use of a goniometer/other measuring device Podiatrists feel that they could accurately measure the range of ankle joint dorsiflexion quantitatively if required
Range of motion at the subtalar joint 11 Motion is estimated not measured Subtalar joint neutral (non weight-bearing) is used as a reference position to determine the amount of pronation and supination Podiatrists believe that this examination is a good indicator of dynamic foot function, but it is difficult to conduct
Position and mobility of the first ray 11 Position and mobility are estimated not measured 9/12 use categorical rather than numerical data Consensus from podiatrists was that for examination of first ray mobility and position categorical data (e.g. “rigid/flexible/normal”) is more useful than numerical data
Forefoot to rearfoot relationship 11 Position is estimated not measured. 11/11 use this assessment in the frontal plane only No consensus on what should be used to define the forefoot (e.g. use middle three metatarsals or use all five metatarsals)
Range of motion at the first MTPJ 11 Motion is estimated not measured 9/12 assess the total range of motion of the first MTPJ 6/12 assess the range of first MTPJ dorsiflexion Consensus from podiatrists was that assessment of the forefoot was dependent on the presenting musculoskeletal complaint/injury and their focus was always on the function of the rearfoot
Foot Posture Index (FPI) [31] 6 6/12 use the FPI as an assessment of foot type/posture Some podiatrists were unaware of the FPI Some podiatrists did use individual elements of FPI
Assessment of the lower limb 12 All podiatrists assess the lower limb, leg and foot Podiatrists state that it is important to assess the pelvis, lower limb, leg and foot in a biomechanical assessment
Leg length discrepancy examination 7 to 9 Limb length is estimated not measured 9/12 assess anatomical limb length 7/12 assess functional limb length Consensus from podiatrists was that the examination of limb length is important and a limb length discrepancy is a common cause of abnormal biomechanical function of the foot, leg and lower limb Podiatrists feel that the process of obtaining a precise measurement (through tape measure) is not reliable and instead categorise the leg length discrepancy, for example <5 mm, <10 mm, >10 mm Measurement of limb length should also involve shoulder tilt, ASIS symmetry (supine and standing)
Additional biomechanical examinations NA Examination of internal and external hip rotation Examination of hamstring flexibility (Straight leg raise test) "Heel raise" test to assess function of tibialis posterior Podiatrists state that these are not mandatory examinations and therefore are only used for specific clinical presentations
Gait Analysis 11 11/11 assess the dynamic function of the foot, ankle and knee 10/11 assess the dynamic function of the hip and upper body Dynamic assessment is as important as static examination for diagnosis and development of a treatment plan
Key determinants of the gait cycle to be observed during a routine gait analysis NA Position of foot at heel strike Forefoot and midfoot position during loading phase.Foot position and motion during propulsion and re-supination Movement of the foot and leg during swing phase Motion of the hip and knee Timing and magnitude of motion 4 to 6/12 podiatrists had access to gait analysis equipment e.g. pressure plate, 2D video analysis Podiatrists state that they follow a relatively consistent protocol when conducting a clinical gait analysis assessment. The protocol involved identifying foot function at key events during the gait cycle and always aiming to analyse these from a visual perspective Consensus among podiatrists was that they would compare the dynamic function of a patient’s foot and ankle to the description of “normal” they were taught at undergraduate level, the predominant basis for this was Root et al. [3, 4] The consensus among podiatrists was that additional gait analysis equipment did not aid their assessment or treatment plan. All podiatrists felt they were confident in their visual analysis of the patient walking and what was feasible within the time constraints