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Abstract

Background: Surgical treatment and clinical management of foot pathology requires accurate, reliable assessment
of foot deformities. Foot and ankle deformities are multi-planar and therefore difficult to quantify by standard
radiographs. Three-dimensional (3D) imaging modalities have been used to define bone orientations using inertial
axes based on bone shape, but these inertial axes can fail to mimic established bone angles used in orthopaedics
and clinical biomechanics. To provide improved clinical relevance of 3D bone angles, we developed techniques to
define bone axes using landmarks on quantitative computed tomography (QCT) bone surface meshes. We aimed
to assess measurement precision of landmark-based, 3D bone-to-bone orientations of hind foot and lesser tarsal
bones for expert raters and a template-based automated method.

Methods: Two raters completed two repetitions each for twenty feet (10 right, 10 left), placing anatomic landmarks
on the surfaces of calcaneus, talus, cuboid, and navicular. Landmarks were also recorded using the automated,
template-based method. For each method, 3D bone axes were computed from landmark positions, and Cardan
sequences produced sagittal, frontal, and transverse plane angles of bone-to-bone orientations. Angular reliability
was assessed using intraclass correlation coefficients (ICCs) and the root mean square standard deviation (RMS-SD)
for intra-rater and inter-rater precision, and rater versus automated agreement.

Results: Intra- and inter-rater ICCs were generally high (≥ 0.80), and the ICCs for each rater compared to the
automated method were similarly high. RMS-SD intra-rater precision ranged from 1.4 to 3.6° and 2.4 to 6.1°,
respectively, for the two raters, which compares favorably to uni-planar radiographic precision. Greatest variability
was in Navicular: Talus sagittal plane angle and Cuboid: Calcaneus frontal plane angle. Precision of the automated,
atlas-based template method versus the raters was comparable to each rater’s internal precision.

Conclusions: Intra- and inter-rater precision suggest that the landmark-based methods have adequate test-retest
reliability for 3D assessment of foot deformities. Agreement of the automated, atlas-based method with the expert
raters suggests that the automated method is a valid, time-saving technique for foot deformity assessment. These
methods have the potential to improve diagnosis of foot and ankle pathologies by allowing multi-planar
quantification of deformities.
Background
Describing and quantifying foot deformities accurately
and reliably is challenging to orthopaedic surgeons, po-
diatrists, and rehabilitation specialists. Bony deformities
in the foot and ankle are multi-planar and therefore dif-
ficult to quantify by standard uni-planar radiographic
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measures. Much research has focused on developing and
validating multi-segment foot and ankle models using
optoelectronic motion capture based on skin-mounted
reflective markers placed on palpable anatomic land-
marks [1,2]. Three-dimensional (3D) imaging techniques
such as magnetic resonance imaging (MRI) [3-5] and
quantitative computed tomography (QCT) [6,7] have
been used to quantify 3D bone-to-bone orientation
angles in vivo.
These 3D imaging studies use the principal compo-

nents method to define bone coordinate axes, meaning
that the bone orientation axes reflect solely the bones’
tral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.
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shapes. While these inertial axes mimic clinical defini-
tions of bone axes for long bones such as the metatarsals
and phalanges, inertial axes may fail to align with clinical
bone axes for the tarsals, particularly the lesser tarsals
(cuboid and navicular) and the hind foot bones (calca-
neus and talus). For example, while the primary inertial
axis for calcaneus (red direction vectors in Figure 1A)
approximates the measured angle of calcaneal pitch on a
lateral X-ray, the second and third inertial axes (green
and blue direction vectors in Figure 1B) provide inaccur-
ate representations of the desired medial-lateral (green)
and superior-inferior (blue) axes that are used to charac-
terise frontal plane and transverse plane deformities.
Others have proposed anatomy-based axes to track

morphological differences in the subtalar and talocrural
joints [8], but to our knowledge, no previous research
has described methods and established bone-to-bone
angular reliability for in vivo imaging using clinically
relevant definitions of foot bone axes. As an initial as-
sessment of the feasibility of a novel method to measure
3D bone orientation angles, we elected to focus on the
lesser tarsals and hind foot bones, for four main reasons.
First, the hind foot and lesser tarsal bones present the
most pressing need for clinically-defined bone axes to
replace inertial axes. Second, these bones are frequently
involved in foot deformities, and influence arch height
and foot function. Third, subtalar and midtarsal joint de-
formities frequently lead to mal-alignments in the
midtarsal joints and in hind foot:forefoot coupling [9].
Finally, pilot testing of our landmark-based methods
suggested that angular measurements of hind foot and
lesser tarsal bones were least reliable, both within and
between raters, largely because mimicking clinically-
based orientation axes used in radiographic measures
[10] necessitates identifying bone surface features that
are not always located at bony edges. For example, repli-
cating lateral X-ray measures of talo-calcaneal angle or
Figure 1 Inertial axes reflecting bone shape. Surface maps of the 7 tars
surrounding calcaneus representing the direction vectors for the principal
(blue). (A) Lateral view of an exemplar foot, showing that the principal iner
the foot, showing that the second and third inertial axes fail to align with c
superior axes of calcaneus.
Meary’s angle [11] requires placing a landmark on the
curved surfaces of calcaneus and talus, which can be
challenging to reliably replicate on surface reconstruc-
tions from QCT.
Thus, the purposes of this study were to: (i) describe

a non-invasive anatomic landmark-based method of de-
fining 3D bone orientation axes for foot bones using
bone atlases derived from segmented QCT surface im-
ages; (ii) determine intra-rater and inter-rater reliability
and angular precision for select hind foot and lesser
tarsal angles; and (iii) assess the agreement between ex-
pert raters and a template-based automated method of
placing anatomic landmarks.

Methods
Participants
Ten healthy participants (5 females, 5 males; age 26.6 ±
3.8 years; height 174.1 ± 8.5 cm; mass 76.5 ± 15.8 kg)
with no known foot pathology underwent bilateral QCT
scans of the foot and ankle. All participants read and
signed an informed consent document outlining the re-
search protocol and associated risks and benefits. The
research protocol (IRB ID# 201103036) was approved by
the institutional review board at Washington University
School of Medicine in Saint Louis, Missouri, USA.

QCT processing and bone atlases
The 7 tarsal and 5 metatarsal bones were segmented
from surrounding soft tissues and from each other using
ImageJ filtering plug-ins, Analyze® software (Biomedical
Imaging Resource, Mayo Clinic, Rochester, MN), and
custom semi-automated graph cut software [12-15]. The
end result of segmentation is a set of binary, filled object
maps which define the QCT voxel coordinates for each
bone.
The segmented object maps and grayscale voxel data

were imported into a custom Bone Measurement Tool
al and 5 metatarsal bones, with a minimum bounding volume
inertial axis (red), second inertial axis (green), and third inertial axis
tial axis reasonably approximates calcaneal pitch; (B) Posterior view of
linically-relevant axes representing the local medial-lateral and inferior-



Gutekunst et al. Journal of Foot and Ankle Research 2013, 6:38 Page 3 of 8
http://www.jfootankleres.com/content/6/1/38
(BMT), a fully automated pipeline for registering tarsal
and metatarsal bones to a pre-defined foot bone atlas
[12,15]. The atlas is made up of template bone surfaces,
one for each tarsal and metatarsal, and a control grid
around each template bone. The template bone surfaces
are constructed from the QCT scan of a healthy subject.
The control grids, defined using a geometric structure
known as subdivision mesh, are used to warp the tem-
plate bone surface geometrically with the goal of
matching a test bone surface. Registration, the process of
fitting the atlas to a test foot, starts with aligning each
template bone in the atlas to the corresponding test
bone using whole-bone rotation, scaling and translation,
followed by a local warping that accounts for the fine-
scale anatomical differences between the test and tem-
plate bones [14]. Atlas registration provides a “mapping”
between points on the surface (or in the interior) of a
template bone and those on the test bone. The BMT
was originally used to assess bone mineral density for
foot bones, which utilises the interior mapping offered
by atlas registration [12-14]. In the current study, BMT
was used to establish correspondence between the sur-
faces of the test and the template bones, with the goal of
mapping landmark locations from the template bones to
the test bones. To this end, BMT was expanded beyond
the task of computing bone mineral density, to incorpor-
ate two different methods to locate bone surface land-
marks that are then used to define bone spatial
orientation:

Method 1: A graphical user interface that allows the
rater to rotate segmented foot bones – either alone or
Table 1 Anatomic landmarks and marker placement precision

Bone Landmarks Description

Calcaneus 1. Posterior calcaneus Midpoint of posterior s

2.Anterior calcaneus Centre of the anterior s

3.Inferior calcaneus Medial-lateral midline o

4.Superior calcaneus Medial-lateral midline o

Talus 5. Posterior talus At medial-lateral midlin

6. Anterior talus Centre of convex surfac

7. Medial talus Dorsal maximum of the

8. Lateral talus Dorsal maximum of the

Cuboid 9. Posterior cuboid Centre of proximal cub

10. Anterior cuboid Centre of distal cuboid

11. Inferior cuboid Inferior-lateral edge of

12. Superior cuboid Most superior, dorsal “p

Navicular 13. Medial navicular Medial aspect of navicu

14. Lateral navicular Lateral aspect of navicu

15. Superior navicular Superior surface of nav
as a group of bones – and record the positions of
anatomical landmarks on the bone surface meshes.
Method 2: An automated landmark placement function,
in which the user provides landmark locations only on
template bone surfaces in the atlas. Using automated
atlas registration, these landmarks are automatically
located and recorded on every test foot in an entire
data set.

In this study, we used Method 1 to assess intra-rater
and inter-rater precision for manual placement of ana-
tomical landmarks, and also compared the results from
Method 1 to the automated Method 2.

Selection of anatomic landmarks and bone orientation
axes
Each bone’s 3D axes were defined based on the locations
of 3–4 anatomic landmarks (Table 1). Landmarks were
chosen by expert consensus to ensure clinical relevance
and consistency with established planar bone axis desig-
nations from the orthopaedics literature [16,17] to pro-
duce clinically relevant bone axes. Definitions of bone
axes based on landmark positions are shown in Table 2.
Bone axis directions followed the convention of the
Oxford Foot Model used in multi-segment foot kinemat-
ics [1], with the resulting + X axis for each bone directed
roughly to the right (medial for left feet and lateral for
right feet), +Y pointing anteriorly (roughly axial for
calcaneus, talus, and cuboid), and + Z directed in a
quasi-vertical direction. For all bones except navicular,
the Y axis was the first axis defined, as the unit vector
connecting two anatomical landmarks representing the
urface of calcaneal tuberosity, centred both medial-laterally and vertically.

urface of calcaneus, where calcaneus articulates with cuboid.

f posterior surface of calcaneal tuberosity, along the inferior border.

f posterior surface of calcaneal tuberosity, along the superior border.

e of the posterior aspect of talus.

e of talar head, centred both medial-laterally and vertically.

medial edge of talar trochlea articular surface.

lateral edge of the talar trochlea articular surface.

oid articular surface (articulation with calcaneus).

articular surface (articulation with fourth and fifth metatarsals).

the tuberosity of cuboid.

oint” of cuboid.

lar, centred in the anterior-posterior direction.

lar; centred in the anterior-poster direction.

icular; at the most superior point of its dorsal surface.



Table 2 Bone orientation definitions based on anatomical landmarks (right foot)

Bone First axis Temporary axis Second axis Third axis

Calcaneus Ycalc = | 1→ 2 | tcalc = | 3→ 4 | Xcalc = Ycalc X tcalc Zcalc = Xcalc X Ycalc

Talus Ytal = | 5→ 6 | ttal = | 7→ 8 | Ztal = ttal X Ytal Xtal = Ytal X Ztal

Cuboid Ycub = | 9→ 10 | tcub = | 11→ 12 | Xcub = Ycub X tcub Zcub = Xcub X Ycub

Navicular Xnav = | 13→ 14 | tnav = | 13→ 15 | Ynav = tnav X Xnav Znav = Xnav X Ynav
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proximal and distal termini of the main longitudinal axis
of the bone. Due to the shape of navicular, X axis
(medial-lateral) was defined first as this represents the
longest bone dimension. For all bones, the second axis
was defined as the cross-product of the first axis and a
temporary (‘dummy’) axis, and the third axis was defined
by crossing the first and second axes. Bone axis compu-
tations for each bone are provided in Table 2, and a
schematic showing landmark placement and bone axes
is shown in Figure 2.
Two expert raters completed two repetitions each for

twenty feet, placing anatomic landmarks on the atlas-
derived surfaces of calcaneus, talus, cuboid, and navicu-
lar. Raters were blinded to the participant number for
each foot: image files were de-identified and reassigned a
randomly generated file number, then presented in a
randomised order. Rater 1 is a biomedical engineer who
was a Ph.D. candidate at the time of data collection, with
8 years of research experience in musculoskeletal bio-
mechanics, including 2 years working with QCT image
data. Rater 1 also beta-tested early versions of the BMT,
which entailed substantial time (>300 hrs) manipulating
3D bone images. Rater 2 is a physical therapist and re-
search scientist with 20 years of experience specialising
in foot and ankle complications of diabetes, including
more than 15 years working with foot and ankle X-rays,
and 2 years working with QCT image data.
Figure 2 Atlas-based QCT surface maps. Surface maps show (A) all 7 ta
tarsal bones with labeled anatomic landmarks; (C) bone orientation axes d
in red, Y-axis is green, and Z-axis is blue.
Landmarks were also recorded using the automated
method based on a landmark template embedded within
the bone atlases [15]. Cardan rotation sequences (XY’Z”)
of bone axes were used to produce sagittal (α), frontal
(β), and transverse (γ) plane angles of the cuboid with
respect to the calcaneus (Cub:Calc), talus with respect to
the calcaneus (Tal:Calc), navicular with respect to the
talus (Nav:Tal), and navicular with respect to calcaneus
(Nav:Calc). Other research groups have used a Cardan
rotation sequence of sagittal, transverse, and frontal
plane angles for the hind foot bones [6,18], but we chose
a Cardan rotation sequence of sagittal, frontal, and
transverse to be consistent with multi-segment kinemat-
ics foot models based on the Oxford Foot Model [1].
Moreover, the sagittal, frontal, transverse rotation
sequence is consistent with the convention for ankle an-
gles recommended by the International Society of Bio-
mechanics [19].

Angular reliability assessment
We assessed three measures of reliability: intra-class cor-
relation coefficient (ICC), angular precision, and agree-
ment. The ICC is a relative measure of reliability that
reflects the test-retest consistency of a measurement
[20]. The operational definition of intra- and inter-rater
precision follows guidelines put forth by the Inter-
national Society of Clinical Densitometry, which describe
rsal and 5 metatarsal bones; (B) expanded view of hind foot and lesser
erived from anatomical landmarks. For each bone, the X-axis is shown
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precision as “the ability of a quantitative measurement
technique to reproduce the same numerical result when
repeatedly performed in an identical fashion” [21]. We
use the term agreement to describe the relationship be-
tween the manual and automated landmark placement
data, as the techniques are not identical.

Data analysis
A two-way, random effects, single-measures ICC model
(ICC 2,1) [20] was used. For the inter-rater ICC calcula-
tions – Rater 1 versus Rater 2 and each rater versus the
automated method – angles were computed using aver-
age landmark positions from the two trials. As the auto-
mated method results in identical landmarks for repeat
measures of the same foot, no averaging was completed.
Intra-rater precision, inter-rater precision, and agree-

ment for each rater versus the automated method were
calculated for each bone-to-bone angular rotation as
the root mean square standard deviations (RMS-SD).
Whereas the ICC assesses the relative consistency of a
measure, RMS-SD assesses the precision and absolute
consistency. To compute RMS-SD, first the standard
deviation (SD) is calculated across repeat angular mea-
surements repeated trials for each of the 20 feet. For
intra-rater precision, SD values represent variability
across repeated trials by the same rater; for inter-rater
precision, SD values represent variability across the
two raters. The SD values are then squared, and these
squared SD values are summed across all samples,
Table 3 Intraclass correlation coefficients for bone-to-bone an

Intra-rater intraclass correlation coefficient

Rater 1 Rater 2

Cuboid:Calcaneus

Sagittal plane (α) 0.77 (0.51, 0.90) 0.51 (0.10, 0.77)

Frontal plane (β) 0.87 (0.71, 0.95) 0.65 (0.31, 0.85)

Transverse plane (γ) 0.95 (0.87, 0.98) 0.75 (0.47, 0.89)

Talus:Calcaneus

Sagittal plane (α) 0.43 (0.01, 0.73) 0.17 (−0.28, 0.56)

Frontal plane (β) 0.94 (0.84, 0.97) 0.85 (0.66, 0.94)

Transverse plane (γ) 0.98 (0.96, 0.99) 0.96 (0.90, 0.98)

Navicular:Talus

Sagittal plane (α) 0.35 (0.10, 0.68) 0.61 (0.23, 0.82)

Frontal plane (β) 0.95 (0.89, 0.98) 0.57 (0.18, 0.80)

Transverse plane (γ) 0.93 (0.84, 0.97) 0.80 (0.56, 0.91)

Navicular:Calcaneus

Sagittal plane (α) 0.71 (0.39, 0.87) 0.42 (0.01, 0.72)

Frontal plane (β) 0.98 (0.96, 0.99) 0.86 (0.67, 0.94)

Transverse plane (γ) 0.97 (0.92, 0.99) 0.87 (0.69, 0.95)

Intraclass correlation coefficients (95% confidence intervals) in sagittal (α), frontal (β
automated anatomical landmark placement.
divided by N to result in the mean squared SD. The
final step is to compute the square root of the mean
squared SD, resulting in the RMS-SD:

RMS−SD ¼
ffiffiffiffiffiffiffiffiffiffiffi
∑SD2

N

s

The RMS-SD is recommended by the International
Society for Clinical Densitometry [21], and has been
used to assess angular precision in X-ray measures of
the foot [9].
One advantage of the RMS-SD is that it represents the

expected variability for repeat measures of the same
angle, expressed in the units of measurement [21]. The
RMS-SD is a measure of the variability of bone angles at
the level of the individual participant – i.e., the number
of degrees that an individual’s bone angle would vary
due to measurement error. In order to assess the repeat-
ability at the level of all participants, we also report
intraclass correlation coefficients (ICCs) for intra-rater
precision, inter-rater precision, and agreement between
raters and the automated method [20].

Results
ICC results were generally moderate to high. The major-
ity of intra-rater ICC values for Rater 1 were ≥ 0.90,
though several sagittal plane (α) angles had low ICC
values (Table 3), including Tal:Calc and Nav:Tal. Simi-
larly, most intra-rater ICC values for Rater 2 were
gles

Inter-rater intraclass correlation coefficient

Rater 1 vs. Rater 2 Rater 1 vs. Auto Rater 2 vs. Auto

0.68 (0.35, 0.86) 0.72 (0.42, 0.88) 0.63 (0.27, 0.84)

0.59 (0.21, 0.82) 0.63 (0.27, 0.84) 0.41 (0.03, 0.72)

0.93 (0.83, 0.97) 0.90 (0.76, 0.96) 0.81 (0.57, 0.92)

0.56 (0.17, 0.80) 0.50 (0.08, 0.77) 0.24 (−0.21, 0.61)

0.84 (0.65, 0.94) 0.78 (0.52, 0.91) 0.82 (0.59, 0.92)

0.98 (0.97, 0.99) 0.95 (0.88, 0.98) 0.93 (0.84, 0.97)

0.39 (−0.06, 0.70) 0.41 (0.03, 0.72) 0.48 (0.06, 0.75)

0.57 (0.19, 0.81) 0.99 (0.97, 1.00) 0.59 (0.21, 0.81)

0.86 (0.69, 0.94) 0.85 (0.65, 0.94) 0.62 (0.26, 0.83)

0.61 (0.24, 0.82) 0.71 (0.40, 0.87) 0.75 (0.47, 0.89)

0.92 (0.80, 0.97) 0.97 (0.93, 0.99) 0.89 (0.73, 0.95)

0.92 (0.81, 0.97) 0.95 (0.87, 0.98) 0.85 (0.65, 0.94)

), and transverse (γ) bone-to-bone orientation angles for manual and
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moderate to high, with the exception of sagittal plane
angles. The inter-tester ICC values of Rater 1 versus the
automated method exceeded inter-tester ICC values for
Rater 1 versus Rater 2. Inter-tester ICC values of Rater 2
versus the automated method were comparable to the
intra-tester ICC values for Rater 2.
Across sagittal, frontal, and transverse angles for the

four bone-to-bone orientations analysed, Rater 1 had
lower RMS-SD than Rater 2 (Table 4). Averaged across
all planes and bone-to-bone orientations, intra-rater pre-
cision averaged 2.3° for Rater 1 and 4.1° for Rater 2. The
single highest intra-rater RMS-SD for Rater 2 (Cub:Calc
frontal plane angle) was 6.1°, and the highest average an-
gular RMS-SD (for Nav:Calc) was 4.9°. Inter-rater preci-
sion was slightly lower than the intra-rater precision for
Rater 2, with highest inter-rater variability in the frontal
plane angle of Cub:Calc (7.1° RMS-SD) and the frontal
plane angle of Nav:Tal (6.1° RMS-SD). For both raters,
precision values between manual placement of land-
marks and the template-based automated method were
comparable to intra-rater precision. The average RMS-
SD values between Rater 1 and the automated method
(2.7°) were lower than the average RMS-SD values be-
tween Rater 1 and Rater 2 (3.7°).

Discussion
We have reported 3D angular precision for two expert
raters and an automated template method to determine
Table 4 Intra- and Inter-rater angular precision for bone-to-b

Intra-rater precision Inter

Rater 1 Rater 2 Rate

Cuboid:Calcaneus

Sagittal plane (α) 1.9° 3.4°

Frontal plane (β) 2.9° 6.1°

Transverse plane (γ) 1.7° 2.7°

Talus:Calcaneus

Sagittal plane (α) 3.3° 3.7°

Frontal plane (β) 1.9° 3.1°

Transverse plane (γ) 1.4° 2.4°

Navicular:Talus

Sagittal plane (α) 3.6° 5.7°

Frontal plane (β) 2.3° 4.7°

Transverse plane (γ) 1.6° 2.9°

Navicular:Calcaneus

Sagittal plane (α) 2.4° 5.9°

Frontal plane (β) 2.7° 5.6°

Transverse plane (γ) 2.1° 3.1°

Root-mean square standard deviations, in degrees, in the sagittal (α), frontal (β), an
anatomical landmark placement.
clinically relevant bone orientations from bone atlases
based on segmented QCT scans of the foot. In contrast
to previous 3D imaging methods to define foot bone
orientation axes using the shape-dependent bone inertial
axes [3,6], the methods presented here define 3D bone
axes using anatomical landmarks, which provides added
clinical relevance.
In general, most ICCs indicated moderate or high reli-

ability within raters, between raters, and comparing each
rater to the automated method. Notably, the sagittal
plane (α) angles exhibited the lowest overall ICC values,
especially for Talus:Calcaneus and Navicular:Talus bone-
to-bone orientations. These results reflect the difficulty
locating landmarks on the talus, particularly the poster-
ior talus (landmark 5 in Figure 2). Additionally, sagittal
plane angles had low ICC values partly because these an-
gles had less variability across individual participants. If
there is little between-subjects variability, then ICCs will
be low even though trial-to-trial variability is small. Con-
versely, if individual participants’ values differ widely
from each other, then ICC values will be high even if
trial-to-trial variability is large [20].
Intra-rater angular precision averaged 2.3° and 4.1° for

the two expert raters, and inter-rater angular precision
averaged 3.7°. Thus, the present study suggests that
atlas-based automated landmark methods can replicate
landmark locations with equivalent precision as an expert
rater. Moreover, these angular precision results are
one angles

-rater precision Agreement with automated method

r 1 vs. Rater 2 Rater 1 vs. Auto Rater 2 vs. Auto

2.0° 2.1° 2.4°

7.1° 4.4° 6.4°

1.6° 2.9° 3.9°

4.4° 2.3° 5.9°

2.7° 3.0° 3.3°

1.5° 2.7° 2.9°

3.5° 3.5° 3.3°

6.1° 1.3° 6.2°

2.4° 2.4° 3.8°

5.1° 2.3° 4.9°

4.9° 3.3° 6.0°

2.8° 2.7° 3.8°

d transverse (γ) bone-to-bone orientation angles for manual and automated
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comparable to uni-planar radiographic precision [10] and
have the advantage of providing a full 3D representation
of static bone-to-bone angles, especially in the frontal
plane and for bone-to-bone angles that are obscured dur-
ing planar X-rays.
To achieve the level of intra-rater and inter-rater pre-

cision observed in this study, the raters required roughly
6 to 8 minutes per bone in order to manipulate bone
surface maps within the graphical user interface and
place landmarks. The automated method results in
equivalent angular precision with negligible processing
time, thus an additional advantage of the atlas-based
automated method is a significant time savings.
The variability observed in bone-to-bone orientation

angles can likely be improved by assessing which indi-
vidual landmarks had the highest spatial variability [18].
Results from the present study would suggest that the
atlas-based automated landmark method can replicate
landmarks with equivalent or superior precision as an
expert rater, and future studies are readily adaptable to
using different definitions of bone axes, especially if a
landmark position with higher test-retest precision can
be adopted. A possible long-term improvement may fol-
low techniques of optoelectronic motion capture by
choosing the most reliable anatomical landmarks, then
creating virtual landmarks to define bone axes in the
most clinically relevant manner. Doing so could maxi-
mise both angular precision and clinical relevance. For
example, in motion capture, several bony landmarks on
the tibia (tibial tuberosity, medial malleolus) and fibula
(fibular head, lateral malleolus) are easily palpable, but
in order to create the most clinically relevant axes for
the shank segment, it is preferable to define direction
vectors based on virtual landmarks, such as the mid-
point between the medial and lateral malleoli to define
the distal endpoint of the shank segment.
One potential limitation of the present study is that

the 3D bone-to-bone orientation methods utilise QCT,
which imparts a low amount of radiation to the partici-
pant. Future research may replicate these methods using
non-radiating 3D imaging modalities such as MRI,
which would help extend the technique’s utility to
pediatric populations with foot deformities, such as club
foot in individuals with cerebral palsy. To expand future
applications of the BMT software, it will be made avail-
able for research purposes upon request. Additionally,
we envision future application of these methods to clin-
ical populations who experience foot and ankle deform-
ity, such as rheumatoid arthritis, diabetic neuropathy
(including Charcot neuropathic osteoarthropathy), and
Charcot-Marie-Tooth disease, or to provide clinically
relevant definitions of bone axes to use in concert with
bone motion studies using bone pins [22-24] or multi-
plane fluoroscopy [25].
Conclusions
We have developed novel methods to assess static, 3D
foot bone-to-bone orientation angles using clinically
relevant bone axes derived from QCT bone surface
meshes. Generally moderate to high ICC values and high
intra- and inter-rater precision suggest that the methods
presented here are reliable for 3D assessment of foot de-
formities. Equivalent precision of a template-based auto-
mated method compared to expert raters suggests that
the automated method may offer time savings that will
enhance clinical applicability. These methods may be
used in a variety of clinical populations to aid diagnosis
and classification of foot and ankle pathologies.
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