POSTER PRESENTATION

Open Access

Forefoot deformation during the stance phase of normal gait

Saartje Duerinck^{1,2*}, Friso Hagman³, Ilse Jonkers⁴, Peter Vaes², Peter Van Roy¹

From 3rd Congress of the International Foot and Ankle Biomechanics Community Sydney, Australia. 11-13 April 2012

Background

During human walking the ankle-foot complex executes seemingly contradictory functions: (1) stabilization of the human body at initial contact, (2) shock absorption during early stance [1-3], (3) Storing elastic energy during midstance and (4) providing a strong lever for push of during final stance [1]. This quadrupled function inevitably demands a transfer from a flexible and compliant foot towards a rigid lever [1]. Despite the viable role of the forefoot in this transfer, knowledge concerning the deformation of the forefoot is limited. The aim of this study is to provide a more detailed description of deformation occurring at the level of the forefoot during the stance phase of normal human walking.

Materials and methods

Using a seven-camera motion capture system (250Hz), a pressure platform (500Hz) and a forceplate (1250Hz), we measured forefoot deformation through kinematic and pressure related outcome measures in 60 healthy subjects.

Results

Small but significant changes in intermetatarsal distance are established during stance phase, with the largest change occurring between metatarsal head II/III and V (Table 1). The changes in intermetatarsal distance and metatarsal arch height show slightly different patterns. Both patterns are characterized by a rapid increase in

Table 1 Parameters characterizing the changes in medio-lateral arch height and mutual distances between metatarsal head I, II/III and V and metatarsal base I and V during stance phase and for the different subphases

		-	-			
	StPh (mm)	HC (mm)	MF (mm)	MS (mm)	IPO (mm)	FPO (mm)
Max. MedioLat Height	1.13 ± 0.08	0.87 ± 0.07	0.87 ± 0.06	1.01 ± 0.04	1.13 ± 0.08	1.05 ± 0.10
Min. MedioLat Height	85.95 ± 8.95	4.39 ± 2.50	12.34 ± 3.32	47.25 ± 12.02	87.39 ± 7.73	95.88 ± 1.27
Max. distance HMTI-HMTV	1.01 ± 0.01	0.92 ± 0.02	0.96 ± 0.02	1.01 ± 0.01	1.00 ± 0.01	0.94 ± 0.02
Min. distance HMTI-HMTV	0.90 ± 0.02	0.90 ± 0.02	0.92 ± 0.02	0.96 ± 0.02	0.94 ± 0.02	0.91 ± 0.02
Max. distance HMTI-HMTII/III	1.01 ± 0.04	0.94 ± 0.04	0.95 ± 0.04	1.01 ± 0.03	1.01 ± 0.02	0.97 ± 0.04
Min. distance HMTI-HMTII/III	0.91 ± 0.04	0.92 ± 0.04	0.93 ± 0.04	0.95 ± 0.04	0.97 ± 0.04	0.93 ± 0.04
Max. distance HMTII/III- HMTV	1.01 ± 0.04	0.89 ± 0.05	0.94 ± 0.05	1.01 ± 0.04	1.01 ± 0.04	0.93 ± 0.04
Min. distance HMTII/III- HMTV	0.87 ± 0.05	0.87 ± 0.05	0.89 ± 0.05	0.94 ± 0.48	0.93 ± 0.04	0.90 ± 0.04
Max. distance BMTI-BMTV	1.00 ± 0.01	0.99 ± 0.01	0.99 ± 0.01	1.00 ± 0.01	1.00 ± 0.01	1.00 ± 0.01
Min. distance BMTI-BMTV	0.97 ±0.01	0.97 ± 0.01	0.99 ± 0.01	0.99 ± 0.01	0.98 ± 0.01	0.97 ± 0.01

Legend: StPh = stance phase, HC = heel contact, MF = metatarsal forming, MS = midstance, IPO = initial propulsion, FPO = final propulsion, max. = maximum, min. = minimum, HMT = head metatarsal, BMT = base metatarsal

* Correspondence: sduerinc@vub.ac.be

¹Department of Experimental Anatomy, Vrije Universiteit Brussel, Brussels, 1090, Belgium

Full list of author information is available at the end of the article

© 2012 Saartje et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

distance during initial stance, reaching a stable platform throughout midstance. At the end of stance phase the intermetatarsal distances rapidly decrease to baseline, whereas the metatarsal arch height increases till a maximum at heel off (Figure 1-5).

High correlation values (>0.7 or <-0.7) are found between temporal pressure and temporal kinematic parameters.

Conclusion

Through stance the forefoot deforms according to a specific pattern, which is predominantly determined through forefoot-ground interaction. In addition, the changes in forefoot kinematics in combination with temporal contact data argue the existence of a mediolateral metatarsal arch and suggest the existence of an inverse arch during metatarsal forming and final propulsion phase.

Acknowledgement

The preparation of this abstract was funded by the Vrije Universiteit Brussel (i.e., GOA 59)

Author details

¹Department of Experimental Anatomy, Vrije Universiteit Brussel, Brussels, 1090, Belgium. ²Department of Physical Therapy, Vrije Universiteit Brussel, Brussels, 1090, Belgium. ³Department of Human Biomechanics & Biometrics, Vrije Universiteit Brussel, Brussels, 1090, Belgium. ⁴Department of Biomedical Kinesiology, Katholieke Universiteit Leuven Belgium, Leuven, 3000, Belgium.

Published: 10 April 2012

References

- Jenkyn TR, Anas K, Nichol A: Foot segment kinematics during normal walking using a multisegment model of the foot and ankle complex. J Biomech Eng 2009, 131:034504.
- Winter DA: Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences. *Clin Orthop Relat Res* 1983, 131:147-154.
- Ren LHD, Ren LQ, Nester C, Tian LM: a phase-dependent hypothesis for locomotor functions of human foot complex. J Bionic Eng 2008, 5:175-180.

doi:10.1186/1757-1146-5-S1-P12

Cite this article as: Duerinck *et al.*: **Forefoot deformation during the stance phase of normal gait.** *Journal of Foot and Ankle Research* 2012 **5** (Suppl 1):P12.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit